
Recent Developments in
Adaptive MPI

Sam White

SC 19 Charm++/AMPI BoF

Overview

● Introduction to AMPI
● Recent Work

○ Communication Optimizations
○ Automatic Global Variable Privatization

2

Motivation

● Variability in various forms (SW and HW) is a challenge for
applications moving toward exascale
○ Task-based programming models address these issues

○

● How to adopt task-based programming models?
○ Develop new codes from scratch
○ Rewrite existing codes, libraries, or modules (and interoperate)
○ Implement other programming APIs on top of tasking runtimes

3

Background
● AMPI virtualizes the ranks of MPI_COMM_WORLD

○ AMPI ranks are user-level threads (ULTs), not OS processes

4

Background
● AMPI virtualizes the ranks of MPI_COMM_WORLD

○ AMPI ranks are user-level threads (ULTs), not OS processes
○ Cost: virtual ranks in each process share global/static variables
○ Benefits:

■ Overdecomposition: run with more ranks than cores
■ Asynchrony: overlap one rank’s communication with another

rank’s computation
■ Migratability: ULTs are migratable at runtime across address

spaces

5

AMPI Benefits
● Communication Optimizations

○ Overlap of computation and communication
○ Communication locality of virtual ranks in shared address space

● Dynamic Load Balancing
○ Balance achieved by migrating AMPI virtual ranks
○ Many different strategies built-in, customizable
○ Isomalloc memory allocator serializes all of a rank’s state

● Fault Tolerance
○ Automatic checkpoint-restart within the same job

6

AMPI Benefits: LULESH-v2.0

7

No overdecomposition or load balancing (8 VPs on 8 PEs):

With 8x overdecomposition, after load balancing (7 VPs on 1 PE shown):

Migratability

● Isomalloc memory allocator reserves a
globally unique slice of virtual memory
space in each process for each virtual rank

●

● Benefit: no user-specific serialization code
○ Handles the user-level thread stack and

all user heap allocations
○ Enables dynamic load balancing and

fault tolerance

8

Communication Optimizations

● AMPI exposes opportunities to optimize for communication locality:
○ Multiple ranks on the same PE
○ Many ranks in the same OS process

9

Communication Optimizations

● New virtualization-aware collective implementations avoid O(VP)
message creation and copies
○ Next: further shared-memory awareness

10

Communication Optimizations

● Application study: XPACC’s PlasCom2 code
○ Now seeing AMPI outperform MPI (+OMP) even without LB

11

Privatization Problem
Illustration of unsafe global/static variable accesses:

12

int rank_global;

void func(void)
{
 MPI_Comm_rank(MPI_COMM_WORLD, &rank_global);

 MPI_Barrier(MPI_COMM_WORLD);

 printf("rank: %d\n", rank_global);
}

MPI Output:
0
1
2
3

AMPI Output:
3
3
3
3

Privatization Methods
● Existing methods

○ Manual refactoring
■ Developer encapsulates mutable global state in structures, passes around the stack
■ Portable, but can take days/weeks of developer effort

○ Thread-local storage segment pointer swapping (TLSglobals)
■ Only need to tag variable declarations, not accesses
■ Now works on LInux and MacOS with GCC and recent Clang

● In-Development methods
○ Process-in-Process library integration (PiPglobals)
○ File-system Globals (FSglobals)
○ Clang/libtooling-based source-to-source transformation

13

Conclusion

● AMPI is increasingly valuable for a growing set of applications
○ Not just those with load imbalance

○

● Recent work spans the full stack of AMPI
○ Conformance to the MPI-3.1 standard
○ Communication performance improvements in

AMPI/Charm++/LRTS
○ More automated tooling for conversion of legacy code
○ Working closely with more application developers

14

Questions?

15

